

Knowledge Representation

Techniques

INTELLIGENT SYSTEMS (CSE-303-F)

Section B

Knowledge Representation

● Knowledge representation (KR) is an important issue in

both cognitive science and artificial intelligence.

− In cognitive science, it is concerned with the way people store

and process information and

− In artificial intelligence (AI), main focus is to store knowledge so

that programs can process it and achieve human intelligence.

● There are different ways of representing knowledge e.g.

− predicate logic,

− semantic networks,

− extended semantic net,

− frames,

− conceptual dependency etc.

● In predicate logic, knowledge is represented in the form

of rules and facts as is done in Prolog.

Semantic Network

 Formalism for representing information about objects,
people, concepts and specific relationship between
them.

 The syntax of semantic net is simple. It is a network of
labeled nodes and links.
− It’s a directed graph with nodes corresponding to concepts,

facts, objects etc. and
− arcs showing relation or association between two concepts.

 The commonly used links in semantic net are of the
following types.
- isa  subclass of entity (e.g., child hospital is subclass of

hospital)
- inst  particular instance of a class (e.g., India is an

instance of country)
- prop  property link (e.g., property of dog is ‘bark)

Representation of Knowledge in Sem Net

 “Every human, animal and bird is living thing

who breathe and eat. All birds can fly. All

man and woman are humans who have two

legs. Cat is an animal and has a fur. All

animals have skin and can move. Giraffe is

an animal who is tall and has long legs.

Parrot is a bird and is green in color”.

Representation in Predicate Logic

● Every human, animal and
bird is living thing who
breathe and eat.

 X [human(X)  living(X)]

 X [animal(X)  living(X)]

 X [bird(X)  living(X)]

● All birds are animal and
can fly.

 X [bird(X)  canfly(X)]

● Every man and woman
are humans who have two
legs.

 X [man(X)  haslegs(X)]

 X [woman(X)  haslegs(X)]

 X [human(X)  has(X, legs)]

● Cat is an animal and has
a fur.

 animal(cat)  has(cat, fur)

● All animals have skin
and can move.

 X [animal(X)  has(X,
skin)  canmove(X)]

● Giraffe is an animal who
is tall and has long legs.

 animal(giraffe)  has(giraffe,
long_legs)  is(giraffe, tall)

● Parrot is a bird and is
green in color.

 bird(parrot)  has(parrot,
green_colour)

Representation in Semantic Net

 Semantic Net

 breathe, eat

 Living_thing prop

 isa isa

two legs isa fly

Human Animal Bird

 isa isa inst isa inst

 prop green

Man Woman Giraffe Cat Parrot

 prop prop prop

 inst fur

john skin, move tall, long legs

Inheritance

● Inheritance mechanism allows knowledge to be
stored at the highest possible level of abstraction
which reduces the size of knowledge base.
− It facilitates inferencing of information associated with

semantic nets.

− It is a natural tool for representing taxonomically structured
information and ensures that all the members and sub-
concepts of a concept share common properties.

− It also helps us to maintain the consistency of the
knowledge base by adding new concepts and members of
existing ones.

● Properties attached to a particular object (class) are
to be inherited by all subclasses and members of
that class.

Property Inheritance Algorithm

Input: Object, and property to be found from Semantic
Net;

Output:Yes, if the object has the desired property else
return false;

Procedure:

● Find an object in the semantic net; Found = false;

● While {(object ≠ root) OR Found } DO
 { If there is a a property attribute attached with an object then

 { Found = true; Report ‘Yes’} else

 object=inst(object, class) OR isa(object, class)

 };

● If Found = False then report ‘No’; Stop

Coding of Semantic Net in Prolog

Isa facts Instance facts Property facts

isa(living_thing, nil).

isa(human, living_thing).

isa(animals, living_thing).

isa(birds, living_thing).

isa(man, human).

isa(woman, human).

isa(cat, animal).

inst(john, man).

inst(giraffe, animal).

inst(parrot, bird)

prop(breathe, living_thing).

prop(eat, living_thing).

prop(two_legs, human).

prop(skin, animal).

prop(move, animal).

prop(fur, bird).

prop(tall, giraffe).

prop(long_legs, giraffe).

prop(tall, animal).

prop(green, parrot).

Inheritance Rules in Prolog

Instance rules:

instance(X, Y) :- inst(X, Y).

instance (X, Y) :- inst(X, Z), subclass(Z,Y).

Subclass rules:

subclass(X, Y) :- isa(X, Y).

subclass(X, Y) :- isa(X, Z), subclass(Z, Y) .

Property rules:

property(X, Y) :- prop(X, Y).

property(X, Y) :- instance(Y,Z), property(X, Z).

property(X, Y) :- subclass(Y, Z), property(X, Z).

Queries

● Is john human?

● Is parrot a living thing?

● Is giraffe an aimal?

● Is woman subclassof
living thing

● Does parrot fly?

● Does john breathe?

● has parrot fur?

● Does cat fly?

?- instance(john, humans). Y

?- instance (parrot,
living_thing). Y

?- instance (giraffe, animal).Y

?- subclass(woman,
living_things). Y

?- property(fly, parrot). Y

?- property (john, breathe). Y

?- property(fur, parrot). N

?- property(fly, cat). N

Knowledge Representation using Frames

● Frames are more structured form of packaging
knowledge,
− used for representing objects, concepts etc.

● Frames are organized into hierarchies or network of
frames.

● Lower level frames can inherit information from upper
level frames in network.

● Nodes are connected using links viz.,
− ako / subc (links two class frames, one of which is subclass of

other e.g., science_faculty class is ako of faculty class),

− is_a / inst (connects a particular instance of a class frame
e.g., Renuka is_a science_faculty)

− a_part_of (connects two class frames one of which is
contained in other e.g., faculty class is_part_of department
class).

− Property link of semantic net is replaced by SLOT fields.

Cont…

● A frame may have any number of slots needed for
describing object. e.g.,
− faculty frame may have name, age, address, qualification etc

as slot names.

● Each frame includes two basic elements : slots and
facets.
− Each slot may contain one or more facets (called fillers)

which may take many forms such as:
 value (value of the slot),

 default (default value of the slot),

 range (indicates the range of integer or enumerated values, a
slot can have),

 demons (procedural attachments such as if_needed,
if_deleted, if_added etc.) and

 other (may contain rules, other frames, semantic net or any
type of other information).

Frame Network - Example

university

a_part_of

department hostel

a_part_of is_a

faculty nilgiri hostel

ako

science_faculty

is_a

renuka

Detailed Representation of Frame

Network
frame0

f_name: university

phone: (default: - 011686971)

address : (default - IIT Delhi)

frame1 frame2

f_name : department f_name : hostel

a_part_of : frame0 a_part_of : frame0

programme : [Btech, Mtech, Ph.D] room : (default - 100)

frame11 frame21

f_name: faculty f_name : nilgiri

a_part_of : frame1 is_a : frame2

age : range (25 - 60) phone : 0116862345

nationality: (default - Indian)

qual: (default - Post graduate)

frame12 frame13

f_name : science faculty f_name : renuka

ako : frame11 is_a : frame12

qual : (default - M.Sc) qual : Ph.D

age: 45

adrress: Janak Puri

Description of Frames

● Each frame represents either a class or an
instance.

● Class frame represents a general concept whereas
instance frame represents a specific occurrence of
the class instance.

● Class frame generally have default values which
can be redefined at lower levels.

● If class frame has actual value facet then decedent
frames can not modify that value.

● Value remains unchanged for subclasses and
instances.

Inheritance in Frames

● Suppose we want to know nationality or phone of an
instance-frame frame13 of renuka.

● These informations are not given in this frame.

● Search will start from frame13 in upward direction till
we get our answer or have reached root frame.

● The frames can be easily represented in prolog by
choosing predicate name as frame with two
arguments.

● First argument is the name of the frame and second
argument is a list of slot - facet pair.

Coding of frames in Prolog

frame(university, [phone (default, 011686971),
 address (default, IIT Delhi)]).

frame(deaprtment, [a_part_of (university),
 programme ([Btech, Mtech, Ph.d]))]).

frame(hostel, [a_part_of (university), room(default, 100)]).

frame(faculty, [a_part_of (department), age(range,25,60),
nationality(default, indian), qual(default, postgraduate)]).

frame(nilgiri, [is_a (hostel), phone(011686234)]).

frame(science_faculty, [ako (faculty),qual(default, M.Sc.)]).

frame(renuka, [is_a (science_faculty), qual(Ph.D.),
 age(45), address(janakpuri)]).

Inheritance Program in Prolog

find(X, Y) :- frame(X, Z), search(Z, Y), !.

find(X, Y) :- frame(X, [is_a(Z),_]), find(Z, Y), !.

find(X, Y) :- frame(X, [ako(Z), _]), find(Z, Y), !.

find(X, Y) :- frame(X, [a_part_of(Z), _]), find(Z, Y).

● Predicate search will basically retrieve the list of

slots-facet pair and will try to match Y for slot.

● If match is found then its facet value is retrieved

otherwise process is continued till we reach to root

frame

Extended Semantic Network

● In conventional Sem Net, clausal form of logic can
not be expressed.

● Extended Semantic Network (ESNet) combines the
advantages of both logic and semantic network.

● In the ESNet, terms are represented by nodes similar
to Sem Net.

● Binary predicate symbols in clausal logic are
represented by labels on arcs of ESNet.
− An atom of the form “Love(john, mary)” is an arc labeled as

‘Love’ with its two end nodes representing ‘john’ and ‘mary’.

● Conclusions and conditions in clausal form are
represented by different kinds of arcs.
− Conditions are drawn with two lines and conclusions are

drawn with one heavy line .

Examples

● Represent ‘grandfather’ definition

 Gfather(X, Y)  Father(X, Z), Parent(Z, Y) in ESNet.

 Z

 Father Parent

X Y

 Gfather

Cont…Example

• Represent clausal rule “Male(X), Female(X) 

Human(X)” using binary representation as

“Isa(X, male), Isa(X, female)  Isa(X, human)” and

subsequently in ESNet as follows:

 male

 Isa Isa

 X human

 Isa

 female

Inference Rules in ESNet

● Inference rules are embedded in the representation
itself.

● The inference that “for every action of giving, there is
an action of taking” in clausal logic written as

 “Action(E, take)  Action(E, give)”.

ESNet Action

 E take

 Action

 E give

Cont…

● The inference rule such as “an actor of taking action is

also the recipient of the action” can be easily

represented in clausal logic as:

− Here E is a variable representing an event where an action of

taking is happening).

 Recipient(E, Y)  Acton(E, take), Actor (E, Y)

ESNet Action

E take

 Recipient

 Actor

Y

Example

● Represent the following clauses of Logic in ESNet.

 Recipient(E, Y)  Acton(E, take), Actor (E, Y)

 Object (e, apple).

 Action(e, take).

 Actor (e, john) .

 apple

 Object

 e E Recipient

 Actor Action Actor

 Action

 john take Y

Contradiction

• The contradiction in the ESNet arises if we have the

following situation.

 Part_of

 P X

 Isa

 Part_of

 Y

Deduction in ESNet

● Both of the following inference mechanisms are

available in ESNet.

− Forward reasoning inference (uses bottom up approach)

 Bottom Up Inferencing: Given an ESNet, apply the

following reduction (resolution) using modus ponen rule of

logic ({A  B, B} then A).

− Backward reasoning inference (uses top down approach).

 Top Down Inferencing: Prove a conclusion from a given

ESNet by adding the denial of the conclusion to the

network and show that the resulting set of clauses in the

network is inconsistent.

Example: Bottom Up Inferencing

Given set of clauses

Isa(X, human)  Isa(X, man)

Isa(john, man).

Inferencing

Isa(john, human)

 human

 Isa

 X

 Isa

 man

 john Isa

 Here X is bound to john

 human

 Isa

 john

Example: Top Down Inferencing

Given set of clauses

Isa(X, human)  Isa(X, man)

Isa(john, man).

Prove conclusion

Query: Isa(john, human)

 denial of query

 human

 Isa

 X

 Isa

 man

 john Isa

 human

 Isa

 X

 Isa Isa

 man

 john Isa

Cont…

 human X = john

 Isa

 Isa

 john

Contradiction or Empty network is

generated. Hence “Isa(john, human)”

is proved.

